靈感範文站

高中物理知識點總結歸納(完整版)精品多篇

高中物理知識點總結歸納(完整版)精品多篇

高中物理知識點總結 篇一

一、力物體的平衡

1、力是物體對物體的作用,是物體發生形變和改變物體的運動狀態(即產生加速度)的原因。 力是矢量。

2、重力 (1)重力是由於地球對物體的吸引而產生的。

〔注意〕重力是由於地球的吸引而產生,但不能說重力就是地球的吸引力,重力是萬有引力的一個分力。

但在地球表面附近,可以認爲重力近似等於萬有引力

(2)重力的大小:地球表面G=mg,離地面高h處G/=mg/,其中g/=[R/(R+h)]2g

(3)重力的方向:豎直向下(不一定指向地心)。

(4)重心:物體的各部分所受重力合力的作用點,物體的重心不一定在物體上。

3、彈力 (1)產生原因:由於發生彈性形變的物體有恢復形變的趨勢而產生的。

(2)產生條件:①直接接觸;②有彈性形變。

(3)彈力的方向:與物體形變的方向相反,彈力的受力物體是引起形變的物體,施力物體是發生形變的物體。在點面接觸的情況下,垂直於面;

在兩個曲面接觸(相當於點接觸)的情況下,垂直於過接觸點的公切面。

①繩的拉力方向總是沿着繩且指向繩收縮的方向,且一根輕繩上的張力大小處處相等。

②輕杆既可產生壓力,又可產生拉力,且方向不一定沿杆。

(4)彈力的大小:一般情況下應根據物體的運動狀態,利用平衡條件或牛頓定律來求解。彈簧彈力可由胡克定律來求解。

★胡克定律:在彈性限度內,彈簧彈力的大小和彈簧的形變量成正比,即F=kx。k爲彈簧的勁度係數,它只與彈簧本身因素有關,單位是N/m。

4、摩擦力

(1)產生的條件:①相互接觸的物體間存在壓力;③接觸面不光滑;③接觸的物體之間有相對運動(滑動摩擦力)或相對運動的趨勢(靜摩擦力),這三點缺一不可。

(2)摩擦力的方向:沿接觸面切線方向,與物體相對運動或相對運動趨勢的方向相反,與物體運動的方向可以相同也可以相反。

(3)判斷靜摩擦力方向的方法:

①假設法:首先假設兩物體接觸面光滑,這時若兩物體不發生相對運動,則說明它們原來沒有相對運動趨勢,也沒有靜摩擦力;若兩物體發生相對運動,則說明它們原來有相對運動趨勢,並且原來相對運動趨勢的方向跟假設接觸面光滑時相對運動的方向相同。然後根據靜摩擦力的方向跟物體相對運動趨勢的方向相反確定靜摩擦力方向。

②平衡法:根據二力平衡條件可以判斷靜摩擦力的方向。

(4)大小:先判明是何種摩擦力,然後再根據各自的規律去分析求解。

①滑動摩擦力大小:利用公式f=μF N 進行計算,其中FN 是物體的正壓力,不一定等於物體的重力,甚至可能和重力無關。或者根據物體的運動狀態,利用平衡條件或牛頓定律來求解。

②靜摩擦力大小:靜摩擦力大小可在0與f max 之間變化,一般應根據物體的運動狀態由平衡條件或牛頓定律來求解。

5、物體的受力分析

(1)確定所研究的物體,分析周圍物體對它產生的作用,不要分析該物體施於其他物體上的力,也不要把作用在其他物體上的力錯誤地認爲通過“力的傳遞”作用在研究對象上。

(2)按“性質力”的順序分析。即按重力、彈力、摩擦力、其他力順序分析,不要把“效果力”與“性質力”混淆重複分析。

(3)如果有一個力的方向難以確定,可用假設法分析。先假設此力不存在,想像所研究的物體會發生怎樣的運動,然後審查這個力應在什麼方向,對象才能滿足給定的運動狀態。

6、力的合成與分解

(1)合力與分力:如果一個力作用在物體上,它產生的效果跟幾個力共同作用產生的效果相同,這個力就叫做那幾個力的合力,而那幾個力就叫做這個力的分力。(2)力合成與分解的根本方法:平行四邊形定則。

(3)力的合成:求幾個已知力的合力,叫做力的合成。

共點的兩個力(F 1 和F 2 )合力大小F的取值範圍爲:|F 1 -F 2 |≤F≤F 1 +F 2 。

(4)力的分解:求一個已知力的分力,叫做力的分解(力的分解與力的合成互爲逆運算)。

在實際問題中,通常將已知力按力產生的實際作用效果分解;爲方便某些問題的研究,在很多問題中都採用正交分解法。

7、共點力的平衡

(1)共點力:作用在物體的同一點,或作用線相交於一點的幾個力。

(2)平衡狀態:物體保持勻速直線運動或靜止叫平衡狀態,是加速度等於零的狀態。

(3)★共點力作用下的物體的平衡條件:物體所受的合外力爲零,即∑F=0,若採用正交分解法求解平衡問題,則平衡條件應爲:∑Fx =0,∑Fy =0。

(4)解決平衡問題的常用方法:隔離法、整體法、圖解法、三角形相似法、正交分解法等等。

二、直線運動

1、機械運動:一個物體相對於另一個物體的位置的改變叫做機械運動,簡稱運動,它包括平動,轉動和振動等運動形式。爲了研究物體的運動需要選定參照物(即假定爲不動的物體),對同一個物體的運動,所選擇的參照物不同,對它的運動的描述就會不同,通常以地球爲參照物來研究物體的運動。

2、質點:用來代替物體的只有質量沒有形狀和大小的點,它是一個理想化的物理模型。僅憑物體的大小不能做視爲質點的依據。

3、位移和路程:位移描述物體位置的變化,是從物體運動的初位置指向末位置的有向線段,是矢量。路程是物體運動軌跡的長度,是標量。

路程和位移是完全不同的概念,僅就大小而言,一般情況下位移的大小小於路程,只有在單方向的直線運動中,位移的大小纔等於路程。

4、速度和速率

(1)速度:描述物體運動快慢的物理量。是矢量。

①平均速度:質點在某段時間內的位移與發生這段位移所用時間的比值叫做這段時間(或位移)的平均速度v,即v=s/t,平均速度是對變速運動的粗略描述。

②瞬時速度:運動物體在某一時刻(或某一位置)的速度,方向沿軌跡上質點所在點的切線方向指向前進的一側。瞬時速度是對變速運動的精確描述。

(2)速率:①速率只有大小,沒有方向,是標量。

②平均速率:質點在某段時間內通過的路程和所用時間的比值叫做這段時間內的平均速率。在一般變速運動中平均速度的大小不一定等於平均速率,只有在單方向的直線運動,二者才相等。

5、加速度

(1)加速度是描述速度變化快慢的物理量,它是矢量。加速度又叫速度變化率。

(2)定義:在勻變速直線運動中,速度的變化Δv跟發生這個變化所用時間Δt的比值,叫做勻變速直線運動的加速度,用a表示。

(3)方向:與速度變化Δv的方向一致。但不一定與v的方向一致。

〔注意〕加速度與速度無關。只要速度在變化,無論速度大小,都有加速度;只要速度不變化(勻速),無論速度多大,加速度總是零;只要速度變化快,無論速度是大、是小或是零,物體加速度就大。

6、勻速直線運動 (1)定義:在任意相等的時間內位移相等的直線運動叫做勻速直線運動。

(2)特點:a=0,v=恆量。 (3)位移公式:S=vt。

7、勻變速直線運動 (1)定義:在任意相等的時間內速度的變化相等的直線運動叫勻變速直線運動。

(2)特點:a=恆量 (3)★公式: 速度公式:V=V0+at 位移公式:s=v0t+ at2

速度位移公式:vt2-v02=2as平均速度V=

以上各式均爲矢量式,應用時應規定正方向,然後把矢量化爲代數量求解,通常選初速度方向爲正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值。

8、重要結論

(1)勻變速直線運動的質點,在任意兩個連續相等的時間T內的位移差值是恆量,即

ΔS=Sn+l –Sn=aT2 =恆量

(2)勻變速直線運動的質點,在某段時間內的中間時刻的瞬時速度,等於這段時間內的平均速度,即:

9、自由落體運動

(1)條件:初速度爲零,只受重力作用。 (2)性質:是一種初速爲零的勻加速直線運動,a=g。

(3)公式:

10。運動圖像

(1)位移圖像(s-t圖像):①圖像上一點切線的斜率表示該時刻所對應速度;

②圖像是直線表示物體做勻速直線運動,圖像是曲線則表示物體做變速運動;

③圖像與橫軸交叉,表示物體從參考點的一邊運動到另一邊。

(2)速度圖像(v-t圖像):①在速度圖像中,可以讀出物體在任何時刻的速度;

②在速度圖像中,物體在一段時間內的位移大小等於物體的速度圖像與這段時間軸所圍面積的值。

③在速度圖像中,物體在任意時刻的加速度就是速度圖像上所對應的點的切線的斜率。

④圖線與橫軸交叉,表示物體運動的速度反向。

⑤圖線是直線表示物體做勻變速直線運動或勻速直線運動;圖線是曲線表示物體做變加速運動。

三、牛頓運動定律

★1、牛頓第一定律:一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種運動狀態爲止。

(1)運動是物體的一種屬性,物體的運動不需要力來維持。

(2)定律說明了任何物體都有慣性。

(3)不受力的物體是不存在的。牛頓第一定律不能用實驗直接驗證。但是建立在大量實驗現象的基礎之上,通過思維的邏輯推理而發現的。它告訴了人們研究物理問題的另一種新方法:通過觀察大量的實驗現象,利用人的邏輯思維,從大量現象中尋找事物的規律。

(4)牛頓第一定律是牛頓第二定律的基礎,不能簡單地認爲它是牛頓第二定律不受外力時的特例,牛頓第一定律定性地給出了力與運動的關係,牛頓第二定律定量地給出力與運動的關係。

2、慣性:物體保持勻速直線運動狀態或靜止狀態的性質。

(1)慣性是物體的。固有屬性,即一切物體都有慣性,與物體的受力情況及運動狀態無關。因此說,人們只能“利用”慣性而不能“克服”慣性。(2)質量是物體慣性大小的量度。

★★★★3。牛頓第二定律:物體的加速度跟所受的外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同,表達式F 合 =ma

(1)牛頓第二定律定量揭示了力與運動的關係,即知道了力,可根據牛頓第二定律,分析出物體的運動規律;反過來,知道了運動,可根據牛頓第二定律研究其受力情況,爲設計運動,控制運動提供了理論基礎。

(2)對牛頓第二定律的數學表達式F 合 =ma,F 合 是力,ma是力的作用效果,特別要注意不能把ma看作是力。

(3)牛頓第二定律揭示的是力的瞬間效果。即作用在物體上的力與它的效果是瞬時對應關係,力變加速度就變,力撤除加速度就爲零,注意力的瞬間效果是加速度而不是速度。

(4)牛頓第二定律F 合 =ma,F合是矢量,ma也是矢量,且ma與F 合 的方向總是一致的。F 合 可以進行合成與分解,ma也可以進行合成與分解。

4、★牛頓第三定律:兩個物體之間的作用力與反作用力總是大小相等,方向相反,作用在同一直線上。

(1)牛頓第三運動定律指出了兩物體之間的作用是相互的,因而力總是成對出現的,它們總是同時產生,同時消失。(2)作用力和反作用力總是同種性質的力。

(3)作用力和反作用力分別作用在兩個不同的物體上,各產生其效果,不可疊加。

5、牛頓運動定律的適用範圍:宏觀低速的物體和在慣性系中。

6、超重和失重

(1)、重:物體有向上的加速度稱物體處於超重。處於超重的物體對支持面的壓力F N (或對懸掛物的拉力)大於物體的重力mg,即F N =mg+ma。(2)失重:物體有向下的加速度稱物體處於失重。處於失重的物體對支持面的壓力FN(或對懸掛物的拉力)小於物體的重力mg。即FN=mg-ma。當a=g時F N =0,物體處於完全失重。(3)對超重和失重的理解應當注意的問題

①不管物體處於失重狀態還是超重狀態,物體本身的重力並沒有改變,只是物體對支持物的壓力(或對懸掛物的拉力)不等於物體本身的重力。②超重或失重現象與物體的速度無關,只決定於加速度的方向。“加速上升”和“減速下降”都是超重;“加速下降”和“減速上升”都是失重。

③在完全失重的狀態下,平常一切由重力產生的物理現象都會完全消失,如單擺停擺、天平失效、浸在水中的物體不再受浮力、液體柱不再產生壓強等。

6、處理連接題問題----通常是用整體法求加速度,用隔離法求力。

四、曲線運動 萬有引力

1、曲線運動

(1)物體作曲線運動的條件:運動質點所受的合外力(或加速度)的方向跟它的速度方向不在同一直線 (2)曲線運動的特點:質點在某一點的速度方向,就是通過該點的曲線的切線方向。質點的速度方向時刻在改變,所以曲線運動一定是變速運動。

(3)曲線運動的軌跡:做曲線運動的物體,其軌跡向合外力所指一方彎曲,若已知物體的運動軌跡,可判斷出物體所受合外力的大致方向,如平拋運動的軌跡向下彎曲,圓周運動的軌跡總向圓心彎曲等。

2、運動的合成與分解

(1)合運動與分運動的關係:①等時性;②獨立性;③等效性。

(2)運動的合成與分解的法則:平行四邊形定則。

(3)分解原則:根據運動的實際效果分解,物體的實際運動爲合運動。

3、★★★平拋運動

(1)特點:①具有水平方向的初速度;②只受重力作用,是加速度爲重力加速度g的勻變速曲線運動。

(2)運動規律:平拋運動可以分解爲水平方向的勻速直線運動和豎直方向的自由落體運動。

①建立直角座標系(一般以拋出點爲座標原點O,以初速度vo方向爲x軸正方向,豎直向下爲y軸正方向);

②由兩個分運動規律來處理(如右圖)。

4、圓周運動

(1)描述圓周運動的物理量

①線速度:描述質點做圓周運動的快慢,大小v=s/t(s是t時間內通過弧長),方向爲質點在圓弧某點的線速度方向沿圓弧該點的切線方向

②角速度:描述質點繞圓心轉動的快慢,大小ω=φ/t(單位rad/s),φ是連接質點和圓心的半徑在t時間內轉過的角度。其方向在中學階段不研究。

③週期T,頻率f ---------做圓周運動的物體運動一週所用的時間叫做週期。

做圓周運動的物體單位時間內沿圓周繞圓心轉過的圈數叫做頻率。

⑥向心力:總是指向圓心,產生向心加速度,向心力只改變線速度的方向,不改變速度的大小。大小 〔注意〕向心力是根據力的效果命名的。在分析做圓周運動的質點受力情況時,千萬不可在物體受力之外再添加一個向心力。

(2)勻速圓周運動:線速度的大小恆定,角速度、週期和頻率都是恆定不變的,向心加速度和向心力的大小也都是恆定不變的,是速度大小不變而速度方向時刻在變的變速曲線運動。

(3)變速圓周運動:速度大小方向都發生變化,不僅存在着向心加速度(改變速度的方向),而且還存在着切向加速度(方向沿着軌道的切線方向,用來改變速度的大小)。一般而言,合加速度方向不指向圓心,合力不一定等於向心力。合外力在指向圓心方向的分力充當向心力,產生向心加速度;合外力在切線方向的分力產生切向加速度。 ①如右上圖情景中,小球恰能過最高點的條件是v≥v臨 v臨由重力提供向心力得v臨 ②如右下圖情景中,小球恰能過最高點的條件是v≥0。

高中物理知識點總結 篇二

一、力學中的物理學史知識點

1、前384年—前322年,古希臘傑出思想家亞里士多德:在對待“力與運動的關係”問題上,錯誤的認爲“維持物體運動需要力”。

2、1638年意大利物理學家伽利略:最早研究“勻加速直線運動”;論證“重物體不會比輕物體下落得快”的物理學家;利用著名的“斜面理想實驗”得出“在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去即維持物體運動不需要力”的結論;發明了空氣溫度計;理論上驗證了落體運動、拋體運動的規律;還製成了第一架觀察天體的望遠鏡;第一次把“實驗”引入對物理的研究,開闊了人們的眼界,打開了人們的新思路;發現了“擺的等時性”等。

3、1683年,英國科學家牛頓:總結三大運動定律、發現萬有引力定律。另外牛頓還發現了光的色散原理;創立了微積分、發明了二項式定理;研究光的本性併發明瞭反射式望遠鏡。其最有影響的著作是《自然哲學的數學原理》。

4、1798年英國物理學家卡文迪許:利用扭秤裝置比較準確地測出了萬有引力常量G=6.67×11-11n·m2/kg2(微小形變放大思想)。

5、1905年愛因斯坦:提出狹義相對論,經典力學不適用於微觀粒子和高速運動物體。即“宏觀”、“低速”是牛頓運動定律的適用範圍。

二、熱學中的物理學史

1、1827年英國植物學家布朗:發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。

2、1661年英國物理學家玻意耳發現:一定質量的氣體在溫度不變時,它的壓強與體積成反比,即爲玻意耳定律。

3、1787年法國物理學家查理髮現:一定質量的氣體在體積不變時,它的壓強與熱力學溫度成正比,即爲查理定律。

4、1802年法國物理學家蓋·呂薩克發現:一定質量的氣體在壓強不變時,它的體積與熱力學溫度成正比,即爲蓋·呂薩克定律。

三、電、磁學中的物理學史

1、1785年法國物理學家庫侖:藉助卡文迪許扭秤裝置並類比萬有引力定律,通過實驗發現了電荷之間的相互作用規律——庫侖定律。

2、1826年德國物理學家歐姆:通過實驗得出導體中的電流跟它兩端的電壓成正比,跟它的電阻成反比即歐姆定律。

3、1820年,丹麥物理學家奧斯特:電流可以使周圍的磁針發生偏轉,稱爲電流的磁效應。

4、1831年英國物理學家法拉第:發現了由磁場產生電流的條件和規律——電磁感應現象。

5、1834年,俄國物理學家楞次:確定感應電流方向的定律——楞次定律。

6、1864年英國物理學家麥克斯韋:預言了電磁波的存在,指出光是一種電磁波,並從理論上得出光速等於電磁波的速度,爲光的電磁理論奠定了基礎。

7、1888年德國物理學家赫茲:用萊頓瓶所做的實驗證實了電磁波的存在並測定了電磁波的傳播速度等於光速並率先發現“光電效應現象”。

高中物理必背知識點 篇三

1、力

力學是高中物理的開山和基礎,彈力的方向和彈簧、摩擦力應該是一輪複習的重中之重,受力分析的判斷不僅關乎到這個部分,也會影響整個物理學科,所謂武學基礎——“蹲馬步”

2、運動學

這個部分是看起來簡單,但做起來易錯,且計算不算死人不罷休的境界,各種剎車、追擊、相遇、滑塊板塊、傳送帶,沒有做題底蘊的支撐,你會感到深深的惡意。

3、牛頓定律

牛頓就是力學中的隱藏高手,就是王者榮耀中的法師,攻擊力本來就不錯,還可以對運動學、電場進行加持,讓你面對的陡然上升了幾個level功力。連接體是這裏面一輪要拿下的核心考點。

4、曲線運動

兩大法寶:平拋和圓周,不能說難,但是大學聯考年年出現,平拋的計算、水平圓周模型、豎直圓周模型、向心和離心的機車拐彎,這四個點重點拿下,然後給自己大大的微笑吧

5、天體運動

天體會的人覺得可愛簡單送分,不會的人覺得變態、噁心、惹人煩,這個部分的核心公式之後很長的一組,但是出題的方式確異常靈活,且題目和實際結合多變,總從意想不到的地方出手,高手過招,就是毫釐之間定勝負,數量級運算可以幫助你不少哦。

6、功和能

力學部分大boss的存在,誰都可以結合,從彈簧到皮帶到滑塊,等你做多了你會感到世界的真諦就是動能定理和一堆物理物體,多過程、大計算、複雜分析,燒腦的偵探小說也就到這個程度了,一輪必須啃下的硬骨頭,想想上甘嶺戰役的激烈程度吧

7、電場

這就像一個軟妹子,看起來瘦弱不堪,但實際是芭比金剛,電場線、帶電粒子運動、電容器、這些都是理工科出題人最喜歡的軟妹子類型,多接觸接觸,熟悉了就好

8、恆定電路

這個部分最難的是電學實驗,7個電學實驗要如數家珍,有人問爲啥啊?因爲考,年年考,考到12分熟了,其他的召喚出體內強大的國中物理基礎就可以了。

9、磁場

電磁學的大boss,一劍封喉,殺人於無形,多見於選擇題壓軸或者和電場結合出在物理最後一道壓軸題,難度係數3.5,轉體動作複雜且難,儘量從步驟上逐個擊破,拿下這個你的大學聯考物理滿分有望了。

10、電磁感應/交變電流

每年必考的考點,電磁感應圖像、理想變壓器、遠端輸電、杆和框在磁場中運動都是熱點,如果知道出題人的喜好,接下來你就知道該做什麼了

11、動量和原子物理

動量的六個常見模型要全面掌握,原子物理類似於文科記憶加理解就好了

12、選修

不論你是選擇光和機械波還是選擇熱學,選修的訣竅就是多做題然後系統總結考點和易錯點,這個是覆蓋面的問題,當覆蓋面足夠的話,拿下就指日可待了。

高中物理的知識點總結 篇四

一、力和運動

受力分析、物體的平衡及其條件,是每年必考知識點。

預計在2014年大學聯考中,本專題內容仍然是大學聯考命題的重點和熱點,從近幾年的試題難度看,本專題單獨命題,難度可能不大,重在對基礎知識與基本應用的考查,其中衛星導航、航天工程、宇宙探測、體育運動、科技與生活熱點問題要特別關注。

二、動量和能量

安徽省大學聯考對本專題的知識點考查頻率非常高,每年必考,對動能定理、機械能守恆定律、功能關係考查難度較大。

“動量和能量觀點是貫穿整個物理學最基本的觀點,動量守恆定律、能量守恆定律是自然界中普遍適用的基本規律,涉及面廣、綜合性強、能力要求高,多年的壓軸題均與本專題知識有關。”楊坤預計,在2014年大學聯考中,會繼續延續近兩年的命題特點,一種可能是以功——功率、動能定理和機械能守恆定律爲考查熱點,主要以選擇題的形式出現,考查考生對基本概念、規律的。掌握情況和初步應用的能力。另一種可能是與牛頓運動定律、曲線運動、電場和電磁感應等知識綜合起來考查,題型以計算題爲主。考題緊密聯繫生產生活、現代科技等問題,如傳送帶的功率消耗、站臺的節能設計、彈簧中的能量、碰撞中的動量守恆問題等。

三、帶電粒子在電場和磁場中的運動

從歷年來試題的難度上看,大多屬於中等難度和較難的題,考題常以科學技術的具體問題爲背景,考查從實際問題中獲取並處理信息,解決實際問題的能力。

計算題主要考查帶電粒子在電場、磁場中的運動和在複合場中的運動,特別是帶電粒子在有界磁場、組合場中的運動,涉及運動軌跡的幾何分析和臨界分析,考查的可能性較大。

“2014年大學聯考理綜物理試題仍將突出對電場和磁場中運動的考查,考查形式既可以是選擇題也可以是計算題,選擇題用來考查場的描述和性質、場力。” 楊坤分析,計算題主要考查帶電粒子在電場、磁場中的運動和在複合場中的運動,特別是帶電粒子在有界磁場、組合場中的運動,涉及運動軌跡的幾何分析和臨界分析,考查的可能性較大。其中電場和磁場知識與生產技術、生活實際、科學研究相結合,如示波管、質譜儀、迴旋加速器、速度選擇器和磁流體發電機等物理模型的應用問題要特別注意。

四、電磁感應和電路的分析、計算

在2014年大學聯考中對本專題知識的考查可能是與其他知識點進行綜合考查,突出考查電磁感應、電路等部分內容。

考查的熱點內容可能是滑軌類問題、線框穿越有界勻強磁場問題、電磁感應圖像問題和電磁感應中的能量問題。

從近四年大學聯考試卷知識點分佈來看,大學聯考對本專題的內容考查頻率比較高,特別是電磁感應部分,每年必考。“對本專題知識點的考查,安徽省大學聯考試題常以選擇題的形式出現,但也有以計算題的形式出現的。”楊坤分析,對電路的考查則經常是與實驗考查相結合,對串並聯電路考查較淺,對交流電的考查相對來說較少而且偏易,對電磁感應的考查相對來說難度偏大,而且經常與其他知識點進行綜合考查,不僅考查考生對基礎知識和基本規律的掌握,還考查考生對基礎知識和基本規律的理解與應用。

“預計在2014年大學聯考中對本專題知識的考查可能是與其他知識點進行綜合考查,突出考查電磁感應、電路等部分內容。”楊坤老師強調,考查的熱點內容可能是滑軌類問題、線框穿越有界勻強磁場問題、電磁感應圖像問題和電磁感應中的能量問題,“在考試說明的題例中增加了滑軌類問題的實例,這或許是一個信號,希望能引起大家的注意。”

五、高中物理常考知識點

1、電壓瞬時值e=Emsinωt/電流瞬時值i=Imsinωt;(ω=2πf)

2、電動勢峯值Em=nBSω=2BLv/電流峯值(純電阻電路中)Im=Em/R總

3、正(餘)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4、理想變壓器原副線圈中的電壓與電流及功率關係:U1/U2=n1/n2;I1/I2=n2/n2;P入=P出

5、在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失:P損′=(P/U)2R;(P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)(見第二冊P198)

6、公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);S:線圈的面積(m2);U:(輸出)電壓(V);I:電流強度(A);P:功率(W)。

注:

(1)交變電流的變化頻率與發電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;

(2)發電機中,線圈在中性面位置磁通量最大,感應電動勢爲零,過中性面電流方向就改變;

(3)有效值是根據電流熱效應定義的,沒有特別說明的交流數值都指有效值;

(4)理想變壓器的匝數比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等於輸出功率,當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;

(5)其它相關內容:正弦交流電圖象(見第二冊P190)/電阻、電感和電容對交變電流的作用(見第二冊P193)。

六、高中物理知識點

機械運動:一物體相對其它物體的位置變化,叫機械運動;

1、參考系:爲研究物體運動假定不動的物體;又名參照物(參照物不一定靜止);

2、質點:只考慮物體的質量、不考慮其大小、形狀的物體;

(1)質點是一理想化模型;

(2)把物體視爲質點的條件:物體的形狀、大小相對所研究對象小的可忽略不計時;

如:研究地球繞太陽運動,火車從北京到上海;

3、時刻、時間間隔:在表示時間的數軸上,時刻是一點、時間間隔是一線段;

如:5點正、9點、7點30是時刻,45分鐘、3小時是時間間隔;

4、位移:從起點到終點的有相線段,位移是矢量,用有相線段表示;路程:描述質點運動軌跡的曲線;

(1)位移爲零、路程不一定爲零;路程爲零,位移一定爲零;

(2)只有當質點作單向直線運動時,質點的位移纔等於路程;

(3)位移的國際單位是米,用m表示

5、位移時間圖象:建立一直角座標系,橫軸表示時間,縱軸表示位移;

(1)勻速直線運動的位移圖像是一條與橫軸平行的直線;

(2)勻變速直線運動的位移圖像是一條傾斜直線;

(3)位移圖像與橫軸夾角的正切值表示速度;夾角越大,速度越大;

6、速度是表示質點運動快慢的物理量;

(1)物體在某一瞬間的速度較瞬時速度;物體在某一段時間的速度叫平均速度;

(2)速率只表示速度的大小,是標量;

7、加速度:是描述物體速度變化快慢的物理量;

(1)加速度的定義式:a=vt-v0/t

(2)加速度的大小與物體速度大小無關;

(3)速度大加速度不一定大;速度爲零加速度不一定爲零;加速度爲零速度不一定爲零;

(4)速度改變等於末速減初速。加速度等於速度改變與所用時間的比值(速度的變化率)加速度大小與速度改變量的大小無關;

(5)加速度是矢量,加速度的方向和速度變化方向相同;

(6)加速度的國際單位是m/s2

勻變速直線運動的規律:

1、速度:勻變速直線運動中速度和時間的關係:vt=v0+at

注:一般我們以初速度的方向爲正方向,則物體作加速運動時,a取正值,物體作減速運動時,a取負值;

(1)作勻變速直線運動的物體中間時刻的瞬時速度等於初速度和末速度的平均;

(2)作勻變速運動的物體中間時刻的瞬時速度等於平均速度,等於初速度和末速度的平均;

2、位移:勻變速直線運動位移和時間的關係:s=v0t+1/2at

注意:當物體作加速運動時a取正值,當物體作減速運動時a取負值;

3、推論:2as=vt2-v02

4、作勻變速直線運動的物體在兩個連續相等時間間隔內位移之差等於定植;s2-s1=aT2

5、初速度爲零的勻加速直線運動:前1秒,前2秒,位移和時間的關係是:位移之比等於時間的平方比;第1秒、第2秒的位移與時間的關係是:位移之比等於奇數比。

自由落體運動:只在重力作用下從高處靜止下落的物體所作的運動;

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推論:2gh=vt2

如何解決物理題 篇五

1、會審題,理解題意是正確解答物理習題的前提,要迅速地理解題意,必須抓住題目中的關鍵字句,找出需要的已知條件和所求的物理量之間的關係,在必要時畫出草圖幫助理解題意。

2、分析物理過程,一個綜合題,往往由若干彼此獨立的子過程組合而成,這些過程又不是孤立的,他們之間存在着一定的制約關係,只要仔細分析物理過程,尋找到前後過程的聯繫,就能找到解決問題的途徑。

3、選擇合適的方法,從思維的角度看,供選擇的方法包括分析法、綜合法、假設法、取消法、反證法、遞推法等等。從物理的角度看,供選擇的方法包括模型化的方法、隔離分析的方法、等效變換的方法、疊加的思想方法、對稱處理的方法、極端分析的方法等等。從數學的角度看,有代數法、幾何方法,等等。

4、學會運用數學知識,根據物理規律列出問題中物理量的關係式,把物理問題轉化爲數學問題,實現了物理過程的數學化。列出物理量間的關係後,下面的任務就是採用最好的數學方法,準確地求出結果,注意運算的技巧可以簡化運算程序,節省計算時間。

5、討論驗證結果,用量綱的方法檢查結果;用數量級估算法檢查結果;用特殊值假設法檢查結果等。

高中物理知識點總結 篇六

力是物體間的相互作用

1、力的國際單位是牛頓,用N表示;

2、力的圖示:用一條帶箭頭的有向線段表示力的大小、方向、作用點;

3、力的示意圖:用一個帶箭頭的線段表示力的方向;

4、力按照性質可分爲:重力、彈力、摩擦力、分子力、電場力、磁場力、核力等等;

重力:由於地球對物體的吸引而使物體受到的力;

a.重力不是萬有引力而是萬有引力的一個分力;

b.重力的方向總是豎直向下的(垂直於水平面向下)

c.測量重力的儀器是彈簧秤;

d.重心是物體各部分受到重力的等效作用點,只有具有規則幾何外形、質量分佈均勻的物體其重心纔是其幾何中心;

彈力:發生形變的物體爲了恢復形變而對跟它接觸的物體產生的作用力;

a.產生彈力的條件:二物體接觸、且有形變;施力物體發生形變產生彈力;

b.彈力包括:支持力、壓力、推力、拉力等等;

c.支持力(壓力)的方向總是垂直於接觸面並指向被支持或被壓的物體;拉力的方向總是沿着繩子的收縮方向;

d.在彈性限度內彈力跟形變量成正比;F=Kx

摩擦力:兩個相互接觸的物體發生相對運動或相對運動趨勢時,受到阻礙物體相對運動的力,叫摩擦力;

a.產生磨擦力的條件:物體接觸、表面粗糙、有擠壓、有相對運動或相對運動趨勢;有彈力不一定有摩擦力,但有摩擦力二物間就一定有彈力;

b.摩擦力的方向和物體相對運動(或相對運動趨勢)方向相反;

c.滑動摩擦力的大小F滑=μFN壓力的大小不一定等於物體的重力;

d.靜摩擦力的大小等於使物體發生相對運動趨勢的外力;

合力、分力:如果物體受到幾個力的作用效果和一個力的作用效果相同,則這個力叫那幾個力的合力,那幾個力叫這個力的分力;

a.合力與分力的作用效果相同;

b.合力與分力之間遵守平行四邊形定則:用兩條表示力的線段爲臨邊作平行四邊形,則這兩邊所夾的對角線就表示二力的合力;

c.合力大於或等於二分力之差,小於或等於二分力之和;

d.分解力時,通常把力按其作用效果進行分解;或把力沿物體運動(或運動趨勢)方向、及其垂直方向進行分解;(力的正交分解法);

矢量

矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、動量、衝量)

標量:只有大小沒有方向的物力量(如:時間、速率、功、功率、路程、電流、磁通量、能量)

直線運動

物體處於平衡狀態(靜止、勻速直線運動狀態)的條件:物體所受合外力等於零;

(1)在三個共點力作用下的物體處於平衡狀態者任意兩個力的合力與第三個力等大反向;

(2)在N個共點力作用下物體處於`平衡狀態,則任意第N個力與(N-1)個力的合力等大反向;

(3)處於平衡狀態的物體在任意兩個相互垂直方向的合力爲零;

機械運動

機械運動:一物體相對其它物體的位置變化。

1、參考系:爲研究物體運動假定不動的物體;又名參照物(參照物不一定靜止);

2、質點:只考慮物體的質量、不考慮其大小、形狀的物體;

(1)質點是一理想化模型;

(2)把物體視爲質點的條件:物體的形狀、大小相對所研究對象小的可忽略不計時;

如:研究地球繞太陽運動,火車從北京到上海;

3、時刻、時間間隔:在表示時間的數軸上,時刻是一點、時間間隔是一線段;

例:5點正、9點、7點30是時刻,45分鐘、3小時是時間間隔;

4、位移:從起點到終點的有相線段,位移是矢量,用有相線段表示;路程:描述質點運動軌跡的曲線;

(1)位移爲零、路程不一定爲零;路程爲零,位移一定爲零;

(2)只有當質點作單向直線運動時,質點的位移纔等於路程;

(3)位移的國際單位是米,用m表示

5、位移時間圖象:建立一直角座標系,橫軸表示時間,縱軸表示位移;

(1)勻速直線運動的位移圖像是一條與橫軸平行的直線;

(2)勻變速直線運動的位移圖像是一條傾斜直線;

(3)位移圖像與橫軸夾角的正切值表示速度;夾角越大,速度越大;

6、速度是表示質點運動快慢的物理量

(1)物體在某一瞬間的速度較瞬時速度;物體在某一段時間的速度叫平均速度;

(2)速率只表示速度的大小,是標量;

7、加速度:是描述物體速度變化快慢的物理量;

(1)加速度的定義式:a=vt-v0/t

(2)加速度的大小與物體速度大小無關;

(3)速度大加速度不一定大;速度爲零加速度不一定爲零;加速度爲零速度不一定爲零;

(4)速度改變等於末速減初速。加速度等於速度改變與所用時間的比值(速度的變化率)加速度大小與速度改變量的大小無關;

(5)加速度是矢量,加速度的方向和速度變化方向相同;

(6)加速度的國際單位是m/s2

勻變速直線運動

1、速度:勻變速直線運動中速度和時間的關係:vt=v0+at

注:一般我們以初速度的方向爲正方向,則物體作加速運動時,a取正值,物體作減速運動時,a取負值;

(1)作勻變速直線運動的物體中間時刻的瞬時速度等於初速度和末速度的平均;

(2)作勻變速運動的物體中間時刻的瞬時速度等於平均速度,等於初速度和末速度的平均;

2、位移:勻變速直線運動位移和時間的關係:s=v0t+1/2at2

注意:當物體作加速運動時a取正值,當物體作減速運動時a取負值;

3、推論:2as=vt2-v02

4、作勻變速直線運動的物體在兩個連續相等時間間隔內位移之差等於定植:s2-s1=aT2

5、初速度爲零的勻加速直線運動:前1秒,前2秒,……位移和時間的關係是:位移之比等於時間的平方比;第1秒、第2秒……的位移與時間的關係是:位移之比等於奇數比;

自由落體運動

只在重力作用下從高處靜止下落的物體所作的運動。

1、位移公式:h=1/2gt2

2、速度公式:vt=gt

3、推論:2gh=vt2

牛頓定律

1、牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種做狀態爲止。

a.只有當物體所受合外力爲零時,物體才能處於靜止或勻速直線運動狀態;

b.力是該變物體速度的原因;

c.力是改變物體運動狀態的原因(物體的速度不變,其運動狀態就不變)

d力是產生加速度的原因;

2、慣性:物體保持勻速直線運動或靜止狀態的性質叫慣性。

a.一切物體都有慣性;

b.慣性的大小由物體的質量決定;

c.慣性是描述物體運動狀態改變難易的物理量;

3、牛頓第二定律:物體的加速度跟所受的合外力成正比,跟物體的質量成反比,加速度的方向跟物體所受合外力的方向相同。

a.數學表達式:a=F合/m;

b.加速度隨力的產生而產生、變化而變化、消失而消失;

c.當物體所受力的方向和運動方向一致時,物體加速;當物體所受力的方向和運動方向相反時,物體減速。

d.力的單位牛頓的定義:使質量爲1kg的物體產生1m/s2加速度的力,叫1N;

4、牛頓第三定律:物體間的作用力和反作用總是等大、反向、作用在同一條直線上的;

a.作用力和反作用力同時產生、同時變化、同時消失;

b.作用力和反作用力與平衡力的根本區別是作用力和反作用力作用在兩個相互作用的物體上,平衡力作用在同一物體上;

曲線運動·萬有引力

曲線運動

質點的運動軌跡是曲線的運動

1、曲線運動中速度的方向在時刻改變,質點在某一點(或某一時刻)的速度方向是曲線在這一點的切線方向

2、質點作曲線運動的條件:質點所受合外力的方向與其運動方向不在同一條直線上;且軌跡向其受力方向偏折;

3、曲線運動的特點

曲線運動一定是變速運動;

曲線運動的加速度(合外力)與其速度方向不在同一條直線上;

4、力的作用

力的方向與運動方向一致時,力改變速度的大小;

力的方向與運動方向垂直時,力改變速度的方向;

力的方向與速度方向既不垂直,又不平行時,力既搞變速度大小又改變速度的方向;

運動的合成與分解

1、判斷和運動的方法:物體實際所作的運動是合運動

2、合運動與分運動的等時性:合運動與各分運動所用時間始終相等;

3、合位移和分位移,合速度和分速度,和加速度與分加速度均遵守平行四邊形定則;

平拋運動

被水平拋出的物體在在重力作用下所作的運動叫平拋運動。

1、平拋運動的實質:物體在水平方向上作勻速直線運動,在豎直方向上作自由落體運動的合運動;

2、水平方向上的勻速直線運動和豎直方向上的自由落體運動具有等時性;

3、求解方法:分別研究水平方向和豎直方向上的二分運動,在用平行四邊形定則求和運動;

勻速圓周運動

質點沿圓周運動,如果在任何相等的時間裏通過的圓弧相等,這種運動就叫做勻速圓周運動。

1、線速度的大小等於弧長除以時間:v=s/t,線速度方向就是該點的切線方向;

2、角速度的大小等於質點轉過的角度除以所用時間:ω=Φ/t

3、角速度、線速度、週期、頻率間的關係:

(1)v=2πr/T;

(2)ω=2π/T;

(3)V=ωr;

(4)f=1/T;

4、向心力:

(1)定義:做勻速圓周運動的物體受到的沿半徑指向圓心的力,這個力叫向心力。

(2)方向:總是指向圓心,與速度方向垂直。

(3)特點:①只改變速度方向,不改變速度大小

②是根據作用效果命名的。

(4)計算公式:F向=mv2/r=mω2r

5、向心加速度:a向=v2/r=ω2r

開普勒三定律

1、開普勒第一定律:所有的行星圍繞太陽運動的軌道都是橢圓,太陽處在所有橢圓的一個焦點上;

說明:在中學間段,若無特殊說明,一般都把行星的運動軌跡認爲是圓;

2、開普勒第三定律:所有行星與太陽的連線在相同的時間內掃過的面積相等;

3、開普勒第三定律:所有行星的軌道的半長軸的三次方跟公轉週期的二次方的比值都相等;

公式:R3/T2=K;

說明:

(1)R表示軌道的半長軸,T表示公轉週期,K是常數,其大小之與太陽有關;

(2)當把行星的軌跡視爲圓時,R表示願的半徑;

(3)該公式亦適用與其它天體,如繞地球運動的衛星;

萬有引力定律

自然界中任何兩個物體都是互相吸引的,引力的大小跟這兩個物體的質量成正比,跟它們的距離的二次方成反比。

1、計算公式

F:兩個物體之間的引力

G:萬有引力常量

M1:物體1的質量

M2:物體2的質量

R:兩個物體之間的距離

依照國際單位制,F的單位爲牛頓(N),m1和m2的單位爲千克(kg),r的單位爲米(m),常數G近似地等於

6.67×10^-11N·m^2/kg^2(牛頓平方米每二次方千克)。

2、解決天體運動問題的思路:

(1)應用萬有引力等於向心力;應用勻速圓周運動的線速度、週期公式;

(2)應用在地球表面的物體萬有引力等於重力;

(3)如果要求密度,則用:m=ρV,V=4πR3/3

機械能

功等於力和物體沿力的方向的位移的乘積;

1、計算公式:w=Fs;

2、推論:w=Fscosθ,θ爲力和位移間的夾角;

3、功是標量,但有正、負之分,力和位移間的夾角爲銳角時,力作正功,力與位移間的夾角是鈍角時,力作負功;

功率

功率是表示物體做功快慢的物理量。

1、求平均功率:P=W/t;

2、求瞬時功率:p=Fv,當v是平均速度時,可求平均功率;

3、功、功率是標量;

功和能之間的關係

功是能的轉換量度;做功的過程就是能量轉換的過程,做了多少功,就有多少能發生了轉化;

動能定理

合外力做的功等於物體動能的變化。

1、數學表達式:w合=mvt2/2-mv02/2

2、適用範圍:既可求恆力的功亦可求變力的功;

3、應用動能定理解題的優點:只考慮物體的初、末態,不管其中間的運動過程;

4、應用動能定理解題的步驟:

(1)對物體進行正確的受力分析,求出合外力及其做的功;

(2)確定物體的初態和末態,表示出初、末態的動能;

(3)應用動能定理建立方程、求解

重力勢能

物體的重力勢能等於物體的重量和它的速度的乘積。

1、重力勢能用EP來表示;

2、重力勢能的數學表達式:EP=mgh;

3、重力勢能是標量,其國際單位是焦耳;

4、重力勢能具有相對性:其大小和所選參考系有關;

5、重力做功與重力勢能間的關係

(1)物體被舉高,重力做負功,重力勢能增加;

(2)物體下落,重力做正功,重力勢能減小;

(3)重力做的功只與物體初、末爲置的高度有關,與物體運動的路徑無關

機械能守恆定律

在只有重力(或彈簧彈力做功)的情形下,物體的動能和勢能(重力勢能、彈簧的彈性勢能)發生相互轉化,但機械能的總量保持不變。

1、機械能守恆定律的適用條件:只有重力或彈簧彈力做功。

2、機械能守恆定律的數學表達式:

3、在只有重力或彈簧彈力做功時,物體的機械能處處相等;

4、應用機械能守恆定律的解題思路

(1)確定研究對象,和研究過程;

(2)分析研究對象在研究過程中的受力,判斷是否遵受機械能守恆定律;

(3)恰當選擇參考平面,表示出初、末狀態的機械能;

(4)應用機械能守恆定律,立方程、求解;

高中物理知識點記憶順口溜 篇七

動量定理解題

動量定理來解題,矢量關係要牢記,

各量均把正負帶,代數加減萬事吉,

中間過程莫關心,便於求解平均力。

動量守恆

所受外力恆爲零,系統動量就守恆,

碰前碰後和碰中,動量總和都相同,

矢量關係別忘記,誰正誰負要分清。

力的作用效果

時間積累動量增,空間積累增動能,

瞬間產生加速度,改變狀態或變形。

動量定理 · 動能定理

動量動能二定理,解起題來特容易,

動量定理求時間,動能定理求位移。

彈簧振子振動

彈簧振子來振動,簡諧運動最典型。

a隨回覆力變化,方向始終指平衡,

大小位移成正比,位移特指對平衡注,

速度與a變化反,這個減時那個增,

動能勢能互轉化,週期變化且守恆。

(注:平衡位置)

振動週期

振動快慢週期定,固有周期不變更,

一週方向變兩次,四倍振幅是路程。

單擺

質點連着輕細繩,理想單擺就做成,

重力分力來回復,小角度下簡諧動。

g和擺長定週期,振幅無關等時性,

伽利略和惠更斯,前者發現後首用。

振動的分類

機械振動有三種,依據能量來分清。

阻尼減幅能量減,簡諧等幅能守恆,

策動力下受迫振,外能不斷來補充。

穩定頻率外力定,步調一致共振生。

機械波

振動傳播波形成,振源介質不可省,

質點振動不遷移,傳播能量和振動,

後邊質點總落後,只緣波動即帶動。

兩向垂直稱橫波,縱波兩向必平行。

高中物理的知識點總結 篇八

一、質點的運動

(1)------直線運動

1)勻變速直線運動

1、平均速度V平=s/t(定義式) 2.有用推論Vt2-Vo2=2as

3、中間時刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5、中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7、加速度a=(Vt-Vo)/t {以Vo爲正方向,a與Vo同向(加速)a>0;反向則a<0}

8、實驗用推論Δs=aT2 {Δs爲連續相鄰相等時間(T)內位移之差}

9、主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。

注:(1)平均速度是矢量; (2)物體速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是決定式;

(4)其它相關內容:質點。位移和路程。參考系。時間與時刻;速度與速率。瞬時速度。

2)自由落體運動

1、初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(從Vo位置向下計算) 4.推論Vt2=2gh

注:(1)自由落體運動是初速度爲零的勻加速直線運動,遵循勻變速直線運動規律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。

(3)豎直上拋運動

1、位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3、有用推論Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(拋出點算起)

5、往返時間t=2Vo/g (從拋出落回原位置的時間)

注:(1)全過程處理:是勻減速直線運動,以向上爲正方向,加速度取負值;

(2)分段處理:向上爲勻減速直線運動,向下爲自由落體運動,具有對稱性;

(3)上升與下落過程具有對稱性,如在同點速度等值反向等。

二、質點的運動

(2)----曲線運動、萬有引力

1)平拋運動

1、水平方向速度:Vx=Vo 2.豎直方向速度:Vy=gt

3、水平方向位移:x=Vot 4.豎直方向位移:y=gt2/2

5、運動時間t=(2y/g)1/2(通常又表示爲(2h/g)1/2)

6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0

7、合位移:s=(x2+y2)1/2,

位移方向與水平夾角α:tgα=y/x=gt/2Vo

8、水平方向加速度:ax=0;豎直方向加速度:ay=g

注:(1)平拋運動是勻變速曲線運動,加速度爲g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成;

(2)運動時間由下落高度h(y)決定與水平拋出速度無關;

(3)θ與β的關係爲tgβ=2tgα;

(4)在平拋運動中時間t是解題關鍵;(5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。

2)勻速圓周運動

1、線速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3、向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5、週期與頻率:T=1/f 6.角速度與線速度的關係:V=ωr

7、角速度與轉速的關係ω=2πn(此處頻率與轉速意義相同)

8、主要物理量及單位:弧長(s):(m);角度(Φ):弧度(rad);頻率(f);赫(Hz);週期(T):秒(s);轉速(n);r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;

(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。

3)萬有引力

1、開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:週期,K:常量(與行星質量無關,取決於中心天體的質量)}

2、萬有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)

3、天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}

4、衛星繞行速度、角速度、週期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}

5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6、地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}

注:(1)天體運動所需的向心力由萬有引力提供,F向=F萬;

(2)應用萬有引力定律可估算天體的質量密度等;

(3)地球同步衛星只能運行於赤道上空,運行週期和地球自轉週期相同;

(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、週期變小(一同三反);

(5)地球衛星的最大環繞速度和最小發射速度均爲7.9km/s。

三、力

(1)常見的力

1、重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用於地球表面附近)

2、胡克定律F=kx {方向沿恢復形變方向,k:勁度係數(N/m),x:形變量(m)}

3、滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}

4、靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm爲最大靜摩擦力)

5、萬有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它們的連線上)

6、靜電力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它們的連線上)

7、電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)

8、安培力F=BILsinθ (θ爲B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)

9、洛侖茲力f=qVBsinθ (θ爲B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)

注:(1)勁度係數k由彈簧自身決定;

(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;

(3)fm略大於μFN,一般視爲fm≈μFN;

(4)其它相關內容:靜摩擦力(大小、方向);

(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);

(6)安培力與洛侖茲力方向均用左手定則判定。

2)力的合成與分解

1、同一直線上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2、互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(餘弦定理) F1⊥F2時:F=(F12+F22)1/2

3、合力大小範圍:|F1-F2|≤F≤|F1+F2|

4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β爲合力與x軸之間的夾角tgβ=Fy/Fx)

注:(1)力(矢量)的合成與分解遵循平行四邊形定則;

(2)合力與分力的關係是等效替代關係,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;

(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;

(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡爲代數運算。

四、動力學

1、牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態爲止

2、牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}

3、牛頓第三運動定律:F=-F′{負號表示方向相反,F、F′各自作用在對方,平衡力與作用力反作用力區別,實際應用:反衝運動}

4、共點力的平衡F合=0,推廣 {正交分解法、三力匯交原理}

5、超重:FN>G,失重:FN

6、牛頓運動定律的適用條件:適用於解決低速運動問題,適用於宏觀物體,不適用於處理高速問題,不適用於微觀粒子

注:平衡狀態是指物體處於靜止或勻速直線狀態,或者是勻速轉動。

五、振動和波

1、簡諧振動F=-kx {F:回覆力,k:比例係數,x:位移,負號表示F的方向與x始終反向}

2、單擺週期T=2π(l/g)1/2 {l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}

3、受迫振動頻率特點:f=f驅動力

4、發生共振條件:f驅動力=f固,A=max,共振的防止和應用

5、機械波、橫波、縱波

注:(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;

(2)溫度是分子平均動能的標誌;

3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;

(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;

(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大δu>0;吸收熱量,Q>0

(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力爲零,分子勢能爲零;

(7)r0爲分子處於平衡狀態時,分子間的距離;

(8)其它相關內容:能的轉化和定恆定律能源的開發與利用。環保物體的內能。分子的動能。分子勢能。

六、衝量與動量

1、動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}

3、衝量:I=Ft {I:衝量(Ns),F:恆力(N),t:力的作用時間(s),方向由F決定}

4、動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}

5、動量守恆定律:p前總=p後總或p=p’也可以是m1v1+m2v2=m1v1+m2v2

6、彈性碰撞:Δp=0;ΔEk=0 {即系統的動量和動能均守恆}

7、非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}

8、完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰後連在一起成一整體}

9、物體m1以v1初速度與靜止的物體m2發生彈性正碰:

v1=(m1-m2)v1/(m1+m2) v2=2m1v1/(m1+m2)

10、由9得的推論-----等質量彈性正碰時二者交換速度(動能守恆、動量守恆)

11、子彈m水平速度vo射入靜止置於水平光滑地面的長木塊M,並嵌入其中一起運動時的機械能損失

E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}

注:

(1)正碰又叫對心碰撞,速度方向在它們“中心”的連線上;

(2)以上表達式除動能外均爲矢量運算,在一維情況下可取正方向化爲代數運算;

(3)系統動量守恆的條件:合外力爲零或系統不受外力,則系統動量守恆(碰撞問題、爆炸問題、反衝問題等);

(4)碰撞過程(時間極短,發生碰撞的物體構成的系統)視爲動量守恆,原子核衰變時動量守恆;

(5)爆炸過程視爲動量守恆,這時化學能轉化爲動能,動能增加;(6)其它相關內容:反衝運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。

七、功和能

1、功:W=Fscosα(定義式){W:功(J),F:恆力(N),s:位移(m),α:F、s間的夾角}

2、重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha-hb)}

3、電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb}

4、電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}

5、功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)}

6、汽車牽引力的功率:P=Fv;P平=Fv平{P:瞬時功率,P平:平均功率}

7、汽車以恆定功率啓動、以恆定加速度啓動、汽車最大行駛速度(vmax=P額/f)

8、電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}

9、焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}

10、純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11、動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}

12、重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}

13、電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}

14、動能定理(對物體做正功,物體的動能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2-mvo2/2)}

15、機械能守恆定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16、重力做功與重力勢能的變化(重力做功等於物體重力勢能增量的負值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量轉化多少;

(2)O0≤α<90O 做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);

(3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少

(4)重力做功和電場力做功均與路徑無關(見2、3兩式);(5)機械能守恆成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;(6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)彈簧彈性勢能E=kx2/2,與勁度係數和形變量有關。

八、分子動理論、能量守恆定律

1、阿伏加德羅常數NA=6.02×1023/mol;分子直徑數量級10-10米

2、油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}

3、分子動理論內容:物質是由大量分子組成的;大量分子做無規則的熱運動;分子間存在相互作用力。

4、分子間的引力和斥力(1)r

(2)r=r0,f引=f斥,F分子力=0,E分子勢能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表現爲引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子勢能≈0

5、熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內能的方式,在效果上是等效的),

W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}

6、熱力學第二定律

克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);

開氏表述:不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其它變化(機械能與內能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}

7、熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:-273.15攝氏度(熱力學零度)}

注:

(1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;

(2)溫度是分子平均動能的標誌;

3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;

(4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最小;

(5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內能增大δu>0;吸收熱量,Q>0

(6)物體的內能是指物體所有的分子動能和分子勢能的總和,對於理想氣體分子間作用力爲零,分子勢能爲零;

(7)r0爲分子處於平衡狀態時,分子間的距離;

(8)其它相關內容:能的轉化和定恆定律〔見第二冊P41〕/能源的開發與利用、環保〔見第二冊P47〕/物體的內能、分子的動能、分子勢能〔見第二冊P47〕。

九、氣體的性質

1、氣體的狀態參量:

溫度:宏觀上,物體的冷熱程度;微觀上,物體內部分子無規則運動的劇烈程度的標誌,

熱力學溫度與攝氏溫度關係:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}

體積V:氣體分子所能佔據的空間,單位換算:1m3=103L=106mL

壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產生持續、均勻的壓力,

標準大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2、氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大

3、理想氣體的狀態方程:p1V1/T1=p2V2/T2 {PV/T=恆量,T爲熱力學溫度(K)}

注:(1)理想氣體的內能與理想氣體的體積無關,與溫度和物質的量有關;

(2)公式3成立條件均爲一定質量的理想氣體,使用公式時要注意溫度的單位,t爲攝氏溫度(℃),而T爲熱力學溫度(K)。

十、電場

1、兩種電荷、電荷守恆定律、元電荷:(e=1.60×10-19C);帶電體電荷量等於元電荷的整數倍

2、庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),

r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}

3、電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}

4、真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}

5、勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}

6、電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}

7、電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8、電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),

UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}

9、電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}

10、電勢能的變化ΔEAB=EB-EA {帶電體在電場中從A位置到B位置時電勢能的差值}

11、電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)

12、電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}

13、平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數)

常見電容器

14、帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15、帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)

類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)

拋運動平行電場方向:初速度爲零的勻加速直線運動d=at2/2,a=F/m=qE/m

注:

(1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和後平分,原帶同種電荷的總量平分;

(2)電場線從正電荷出發終止於負電荷,電場線不相交,切線方向爲場強方向,電場線密處場強大,順着電場線電勢越來越低,電場線與等勢線垂直;

3)常見電場的電場線分佈要求熟記;

(4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;

(5)處於靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直於導體表面,導體內部合場強爲零,

導體內部沒有淨電荷,淨電荷只分佈於導體外表面;

(6)電容單位換算:1F=106μF=1012PF;

(7)電子伏(eV)是能量的單位,1eV=1.60×10-19J;

(8)其它相關內容:靜電屏蔽/示波管、示波器及其應用等勢面。

十一、恆定電流

1、電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}

2、歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}

3、電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}

4、閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外

{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}

5、電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}

6、焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}

7、純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8、電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總

{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}

9、電路的串/並聯 串聯電路(P、U與R成正比) 並聯電路(P、I與R成反比)

電阻關係(串同並反) R串=R1+R2+R3+ 1/R並=1/R1+1/R2+1/R3+

電流關係 I總=I1=I2=I3 I並=I1+I2+I3+

電壓關係 U總=U1+U2+U3+ U總=U1=U2=U3

功率分配 P總=P1+P2+P3+ P總=P1+P2+P3+

10、歐姆表測電阻

(1)電路組成 (2)測量原理

兩表筆短接後,調節Ro使電錶指針滿偏,得

Ig=E/(r+Rg+Ro)

接入被測電阻Rx後通過電錶的電流爲

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由於Ix與Rx對應,因此可指示被測電阻大小

(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。

(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。

11、伏安法測電阻

電流表內接法: 電流表外接法:

電壓表示數:U=UR+UA 電流表示數:I=IR+IV

Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

選用電路條件Rx>>RA [或Rx>(RARV)1/2] 選用電路條件Rx<

12、滑動變阻器在電路中的限流接法與分壓接法

限流接法

電壓調節範圍小,電路簡單,功耗小 電壓調節範圍大,電路複雜,功耗較大

便於調節電壓的選擇條件Rp>Rx 便於調節電壓的選擇條件Rp

注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;

(3)串聯總電阻大於任何一個分電阻,並聯總電阻小於任何一個分電阻;

(4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大;

(5)當外電路電阻等於電源電阻時,電源輸出功率最大,此時的輸出功率爲E2/(2r);

(6)其它相關內容:電阻率與溫度的關係半導體及其應用超導及其應用〔見第二冊P127〕。

十二、磁場

1、磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m

2、安培力F=BIL;(注:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}

3、洛侖茲力f=qVB(注V⊥B);質譜儀{f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}

4、在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):

(1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0

(2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB

;r=mV/qB;T=2πm/qB;(b)運動週期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);

解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。

注:(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;

(2)磁感線的特點及其常見磁場的磁感線分佈要掌握;

(3)其它相關內容:地磁場/磁電式電錶原理/迴旋加速器/磁性材料

十三、電磁感應

1、[感應電動勢的大小計算公式]

1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}

2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}

3)Em=nBSω(交流發電機最大的感應電動勢) {Em:感應電動勢峯值}

4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}

2、磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}

3、感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}

*4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感係數(H)(線圈L有鐵芯比無鐵芯時要大),

ΔI:變化電流,?t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

注:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點;

(2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。

(4)其它相關內容:自感/日光燈。

十四、交變電流

1、電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)

2、電動勢峯值Em=nBSω=2BLv 電流峯值(純電阻電路中)Im=Em/R總

3、正(餘)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4、理想變壓器原副線圈中的電壓與電流及功率關係

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5、在遠距離輸電中,採用高壓輸送電能可以減少電能在輸電線上的損失損′=(P/U)2R;

(P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻);

6、公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數;B:磁感強度(T);

S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。

注:(1)交變電流的變化頻率與發電機中線圈的轉動的頻率相同即:ω電=ω線,f電=f線;

(2)發電機中,線圈在中性面位置磁通量最大,感應電動勢爲零,過中性面電流方向就改變;

(3)有效值是根據電流熱效應定義的,沒有特別說明的交流數值都指有效值;

(4)理想變壓器的匝數比一定時,輸出電壓由輸入電壓決定,輸入電流由輸出電流決定,輸入功率等於輸出功率,

當負載的消耗的功率增大時輸入功率也增大,即P出決定P入;

(5)其它相關內容:正弦交流電圖象/電阻、電感和電容對交變電流的作用。

十五、電磁振盪和電磁波

振盪電路T=2π(LC)1/2;f=1/T {f:頻率(Hz),T:週期(s),L:電感量(H),C:電容量(F)}

2、電磁波在真空中傳播的速度c=3.00×108m/s,λ=c/f {λ:電磁波的波長(m),f:電磁波頻率}

注:(1)在LC振盪過程中,電容器電量最大時,振盪電流爲零;電容器電量爲零時,振盪電流最大。

高中物理知識點總結 篇九

1.電勢能的概念

(1)電勢能

電荷在電場中具有的勢能。

(2)電場力做功與電勢能變化的關係

在電場中移動電荷時電場力所做的功在數值上等於電荷電勢能的減少量,即WAB=εA-εB。

①當電場力做正功時,即WAB>0,則εA>εB,電勢能減少,電勢能的減少量等於電場力所做的功,即Δε減=WAB。

②當電場力做負功時,即WAB<0,則εA<εB,電勢能在增加,增加的電勢能等於電場力做功的絕對值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以說電勢能在減少,只不過電勢能的減少量爲負值,即ε減=εA-εB=WAB。

說明:某一物理過程中其物理量的增加量一定是該物理量的末狀態值減去其初狀態值,減少量一定是初狀態值減去末狀態值。

(3)零電勢能點

在電場中規定的任何電荷在該點電勢能爲零的點。理論研究中通常取無限遠點爲零電勢能點,實際應用中通常取大地爲零電勢能點。

說明:

①零電勢能點的選擇具有任意性。

②電勢能的數值具有相對性。

③某一電荷在電場中確定兩點間的電勢能之差與零電勢能點的選取無關。

2.電勢的概念

(1)定義及定義式

電場中某點的電荷的電勢能跟它的電量比值,叫做這一點的電勢。

(2)電勢的單位:伏(V)。

(3)電勢是標量。

(4)電勢是反映電場能的性質的物理量。

(5)零電勢點

規定的電勢能爲零的點叫零電勢點。理論研究中,通常以無限遠點爲零電勢點,實際研究中,通常取大地爲零電勢點。

(6)電勢具有相對性

電勢的數值與零電勢點的選取有關,零電勢點的選取不同,同一點的電勢的數值則不同。

(7)順着電場線的方向電勢越來越低。電場強度的方向是電勢降低最快的方向。

(8)電勢能與電勢的關係:ε=qU。

高中物理知識點總結 篇十

高中物理的確難,實用口訣能幫忙。物理公式、規律主要通過理解和運用來記憶,本口訣也要通過理解,發揮韻調特點,能對高中物理重要知識記憶起輔助作用。

一、運動的描述

1、物體模型用質點,忽略形狀和大小;地球公轉當質點,地球自轉要大小。物體位置的變化,準確描述用位移,運動快慢s比t,a用δv與t比。

2、運用一般公式法,平均速度是簡法,中間時刻速度法,初速度零比例法,再加幾何圖像法,求解運動好方法。自由落體是實例,初速爲零a等g.豎直上拋知初速,上升最高心有數,飛行時間上下回,整個過程勻減速。中心時刻的速度,平均速度相等數;求加速度有好方,δs等at平方。

3、速度決定物體動,速度加速度方向中,同向加速反向減,垂直拐彎莫前衝。

二、力

1、解力學題堡壘堅,受力分析是關鍵;分析受力性質力,根據效果來處理。

2、分析受力要仔細,定量計算七種力;重力有無看

提示,根據狀態定彈力;先有彈力後摩擦,相對運動是依據;萬有引力在萬物,電場力存在定無疑;洛侖茲力安培力,二者實質是統一;相互垂直力最大,平行無力要切記。

3、同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明;兩力合力小和大,兩個力成q角夾,平行四邊形定法;合力大小隨q變,只在最大最小間,多力合力合另邊。

多力問題狀態揭,正交分解來解決,三角函數能化解。

4、力學問題方法多,整體隔離和假設;整體只需看外力,求解內力隔離做;狀態相同用整體,否則隔離用得多;即使狀態不相同,整體牛二也可做;假設某力有或無,根據計算來定奪;極限法抓臨界態,程序法按順序做;正交分解選座標,軸上矢量儘量多。

三、牛頓運動定律

1.f等ma,牛頓二定律,產生加速度,原因就是力。

合力與a同方向,速度變量定a向,a變小則u可大,只要a與u同向。

2.n、t等力是視重,mg乘積是實重;超重失重視視重,其中不變是實重;加速上升是超重,減速下降也超重;失重由加降減升定,完全失重視重零

四、曲線運動、萬有引力

1、運動軌跡爲曲線,向心力存在是條件,曲線運動速度變,方向就是該點切線。

2、圓周運動向心力,供需關係在心裏,徑向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心離。

3、萬有引力因質量生,存在於世界萬物中,皆因天體質量大,萬有引力顯神通。衛星繞着天體行,快慢運動的衛星,均由距離來決定,距離越近它越快,距離越遠越慢行,同步衛星速度定,定點赤道上空行。

五、機械能與能量

1、確定狀態找動能,分析過程找力功,正功負功加一起,動能增量與它同。

2、明確兩態機械能,再看過程力做功,“重力”之外功爲零,初態末態能量同。

3、確定狀態找量能,再看過程力做功。有功就有能轉變,初態末態能量同。

六、電場

1、庫侖定律電荷力,萬有引力引場力,好像是孿生兄弟,kqq與r平方比。

2、電荷周圍有電場,f比q定義場強。kq比r2點電荷,u比d是勻強電場。

3、電場強度是矢量,正電荷受力定方向。描繪電場用場線,疏密表示弱和強。

4、場能性質是電勢,場線方向電勢降。場力做功是qu,動能定理不能忘。

5、電場中有等勢面,與它垂直畫場線。方向由高指向低,面密線密是特點。

七、恆定電流

1、電荷定向移動時,電流等於q比t。自由電荷是內因,兩端電壓是條件。

正荷流向定方向,串電流表來計量。電源外部正流負,從負到正經內部。

2、電阻定律三因素,溫度不變才得出,控制變量來論述,rl比s等電阻。

電流做功uit,電熱i平方rt。電功率,w比t,電壓乘電流也是。

3、基本電路聯串並,分壓分流要分明。複雜電路動腦筋,等效電路是關鍵。

4、閉合電路部分路,外電路和內電路,遵循定律屬歐姆。

路端電壓內壓降,和就等電動勢,除於總阻電流是。

八、磁場

1、磁體周圍有磁場,n極受力定方向;電流周圍有磁場,安培定則定方向。

2.f比il是場強,φ等bs磁通量,磁通密度φ比s,磁場強度之名異。

安培力,相互垂直要注意。

4、洛侖茲力安培力,力往左甩別忘記。

九、電磁感應

1、電磁感應磁生電,磁通變化是條件。迴路閉合有電流,迴路斷開是電源。

感應電動勢大小,磁通變化率知曉。

2、楞次定律定方向,阻礙變化是關鍵。導體切割磁感線,右手定則更方便。

3、楞次定律是抽象,真正理解從三方,阻礙磁通增和減,相對運動受反抗,自感電流想阻擋,能量守恆理應當。楞次先看原磁場,感生磁場將何向,全看磁通增或減,安培定則知i向。

十、交流電

1、勻強磁場有線圈,旋轉產生交流電。電流電壓電動勢,變化規律是絃線。

中性面計時是正弦,平行面計時是餘弦。

ω是最大值,有效值用熱量來計算。

3、變壓器供交流用,恆定電流不能用。

理想變壓器,初級ui值,次級ui值,相等是原理。

電壓之比值,正比匝數比;電流之比值,反比匝數比。

運用變壓比,若求某匝數,化爲匝伏比,方便地算出。

遠距輸電用,升壓降流送,否則耗損大,用戶後降壓。

十一、氣態方程

研究氣體定質量,確定狀態找參量。絕對溫度用大t,體積就是容積量。

壓強分析封閉物,牛頓定律幫你忙。狀態參量要找準,pv比t是恆量。

十二、熱力學定律

1、第一定律熱力學,能量守恆好感覺。內能變化等多少,熱量做功不能少。

正負符號要準確,收入支出來理解。對內做功和吸熱,內能增加皆正值;對外做功和放熱,內能減少皆負值。

2、熱力學第二定律,熱傳遞是不可逆,功轉熱和熱轉功,具有方向性√本站★√不逆。

十三、機械振動

1、簡諧振動要牢記,o爲起點算位移,回覆力的方向指,始終向平衡位置,

大小正比於位移,平衡位置u大極。

2.o點對稱別忘記,振動強弱是振幅,振動快慢是週期,一週期走4a路,單擺週期l比g,再開方根乘2p,秒擺週期爲2秒,擺長約等長1米。

到質心擺長行,單擺具有等時性。

3、振動圖像描方向,從底往頂是向上,從頂往底是下向;振動圖像描位移,頂點底點大位移,正負符號方向指。

十四、機械波

1、左行左坡上,右行右坡上。峯點谷點無方向。

2、順着傳播方向吧,從谷往峯想上爬,腳底總得往下蹬,上下振動遷不動。

3、不同時刻的圖像,δt四分一或三,質點動向疑惑散,s等vt派用場。

十五、光學

1、自行發光是光源,同種均勻直線傳。若是遇見障礙物,傳播路徑要改變。

反射折射兩定律,折射定律是重點。光介質有折射率,(它的)定義是正弦比值,還可運用速度比,波長比值也使然。

2、全反射,要牢記,入射光線在光密。入射角大於臨界角,折射光線無處覓。

十六、物理光學

1、光是一種電磁波,能產生干涉和衍射。衍射有單縫和小孔,干涉有雙縫和薄膜。單縫衍射中間寬,干涉(條紋)間距差不多。小孔衍射明暗環,薄膜干涉用處多。它可用來測工件,還可製成增透膜。泊松亮斑是衍射,干涉公式要把握。〖選修3-4〗

2、光照金屬能生電,入射光線有極限。光電子動能大和小,與光子頻率有關聯。光電子數目多和少,與光線強弱緊相連。光電效應瞬間能發生,極限頻率取決逸出功。

十七、動量

1、確定狀態找動量,分析過程找衝量,同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明。

2、確定狀態找動量,分析過程找衝量,外力衝量若爲零,初態末態動量同。

十八、原子原子核

1、原子核,中央站,電子分層圍它轉;向外躍遷爲激發,輻射光子向內遷;光子能量hn,能級差值來計算。

2、原子核,能改變,αβ兩衰變。α粒是氦核,電子流是β射線。

γ光子不單有,伴隨衰變而出現。鈾核分開是裂變,中子撞擊是條件。

裂變可造原子彈,還可用它來發電。輕核聚合是聚變,溫度極高是條件。

變可以造氫彈,還是太陽能量源;和平利用前景好,可惜至今未實現。