靈感範文站

位置:首頁 > 實用文 > 實用文精選

高一數學函數知識點多篇

高一數學函數知識點多篇

高一數學函數知識點 篇一

一、一次函數定義與定義式:

自變量x和因變量y有如下關係:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx(k爲常數,k≠0)

二、一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值爲k

即:y=kx+b(k爲任意不爲零的實數b取任何實數)

2、當x=0時,b爲函數在y軸上的截距。

三、一次函數的圖像及性質:

1、作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的座標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)爲y=kx+b。

(2)因爲在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最後得到一次函數的表達式。

五、一次函數在生活中的應用:

1、當時間t一定,距離s是速度v的一次函數。s=vt。

2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:

1、求函數圖像的k值:(y1-y2)/(x1-x2)

2、求與x軸平行線段的中點:|x1-x2|/2

3、求與y軸平行線段的中點:|y1-y2|/2

4、求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

I.定義與定義表達式

一般地,自變量x和因變量y之間存在如下關係:

y=ax’2+bx+c

(a,b,c爲常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)

則稱y爲x的二次函數。

二次函數表達式的右邊通常爲二次三項式。

II.二次函數的三種表達式

一般式:y=ax’2+bx+c(a,b,c爲常數,a≠0)

頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)]

交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

注:在3種形式的互相轉化中,有如下關係:

h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

III.二次函數的圖像

在平面直角座標系中作出二次函數y=x’2的圖像,

可以看出,二次函數的圖像是一條拋物線。

IV.拋物線的性質

1、拋物線是軸對稱圖形。對稱軸爲直線

x=-b/2a。

對稱軸與拋物線的交點爲拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,座標爲

P(-b/2a,(4ac-b’2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4、一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5、常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6、拋物線與x軸交點個數

Δ=b’2-4ac>0時,拋物線與x軸有2個交點。

Δ=b’2-4ac=0時,拋物線與x軸有1個交點。

Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b’2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

V.二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax’2+bx+c,

當y=0時,二次函數爲關於x的一元二次方程(以下稱方程),

即ax’2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫座標即爲方程的根。

高一數學函數知識點 篇二

1、函數的奇偶性

(1)若f(x)是偶函數,那麼f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用於求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較爲複雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2、複合函數的有關問題

(1)複合函數定義域求法:若已知 的定義域爲[a,b],其複合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域爲[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)複合函數的單調性由“同增異減”判定;

3、函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程爲f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程爲:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

高一數學函數知識點 篇三

一、增函數和減函數

一般地,設函數f(x)的定義域爲I:

如果對於屬於I內某個區間上的任意兩個自變量的值x1、x2,當x1<x2時都有f(x1)<f(x2).那麼就說f(x)在 這個區間上是增函數。

如果對於屬於I內某個區間上的任意兩個自變量的值x1、x2,當x1<x2時都有f(x1)>f(x2).那麼就是f(x)在這個區間上是減函數。

二、單調區間

單調區間是指函數在某一區間內的函數值Y,隨自變量X增大而增大(或減小)恆成立。如果函數y=f(x)在某個區間是增函數或減函數。那麼就說函數y=f(x)在這一區間具有(嚴格的)單調性,這一區間叫做y= f(x)的單調區間。

一、指數函數的定義

指數函數的一般形式爲y=a^x(a0且≠1) (x∈R).

二、指數函數的性質

1.曲線沿x軸方向向左無限延展〈=〉函數的定義域爲(-∞,+∞)

2.曲線在x軸上方,而且向左或向右隨着x值的減小或增大無限靠近X軸(x軸是曲線的漸近線)〈=〉函數的值域爲(0,+∞)

一、對數與對數函數定義

1.對數:一般地,如果a(a大於0,且a不等於1)的b次冪等於N,那麼數b叫做以a爲底N的對數,記作log aN=b,讀作以a爲底N的對數,其中a叫做對數的底數,N叫做真數。

2.對數函數:一般地,函數y=log(a)X,(其中a是常數,a0且a不等於1)叫做對數函數,它實際上就是指數函數的反函數,因此指數函數裏對於a的規定,同樣適用於對數函數。

二、方法點撥

在解決函數的綜合性問題時,要根據題目的具體情況把問題分解爲若干小問題一次解決,然後再整合解決的結果,這也是分類與整合思想的一個重要方面。

一、冪函數定義

形如y=x^a(a爲常數)的函數,即以底數爲自變量 冪爲因變量,指數爲常量的函數稱爲冪函數。

二、性質

冪函數不經過第三象限,如果該函數的指數的分子n是偶數,而分母m是任意整數,則y0,圖像在第一;二象限。這時(-1)^p的指數p的奇偶性無關。

如果函數的指數的分母m是偶數,而分子n是任意整數,則x0(或xy0(或y=0),圖像在第一象限。與p的奇偶性關係不大,

高一數學函數知識點 篇四

(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;

4、函數的週期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恆成立,則y=f(x)是週期爲2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是週期爲2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是週期爲4︱a︱的周期函數;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是週期爲2 的周期函數;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是週期爲2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是週期爲2 的周期函數;

5、方程k=f(x)有解 k∈D(D爲f(x)的值域);

6.a≥f(x) 恆成立 a≥[f(x)]max,; a≤f(x) 恆成立 a≤[f(x)]min;

7、(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );

8、判斷對應是否爲映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10、對於反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域爲非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互爲反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互爲反函數,設f(x)的定義域爲A,值域爲B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

11、處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關係;

12、依據單調性,利用一次函數在區間上的保號性可解決求一類參數的範圍問題

13、恆成立問題的處理方法:(1)分離參數法;(2)轉化爲一元二次方程的根的分佈列不等式(組)求解;

高一數學函數知識點 篇五

一、函數的概念與表示

1、映射

(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

2、函數

構成函數概念的三要素

①定義域②對應法則③值域

兩個函數是同一個函數的條件:三要素有兩個相同

二、函數的解析式與定義域

1、求函數定義域的主要依據:

(1)分式的分母不爲零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函數的真數必須大於零;

(4)指數函數和對數函數的底數必須大於零且不等於1;

三、函數的值域

1求函數值域的方法

①直接法:從自變量x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函數;

②換元法:利用換元法將函數轉化爲二次函數求值域,適合根式內外皆爲一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母爲二次且∈R的分式;

④分離常數:適合分子分母皆爲一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函數的單調性求值域;

⑥圖象法:二次函數必畫草圖求其值域;

⑦利用對號函數

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數

四。函數的奇偶性

1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)爲偶函數。

如果對於任意∈A,都有,則稱y=f(x)爲奇

函數。

2.性質:

①y=f(x)是偶函數y=f(x)的圖象關於軸對稱,y=f(x)是奇函數y=f(x)的圖象關於原點對稱,

②若函數f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱②看f(x)與f(-x)的關係

五、函數的單調性

1、函數單調性的定義:

2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

高一數學函數知識點 篇六

高一數學函數知識點歸納

1、函數:設A、B爲非空集合,如果按照某個特定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B爲從集合A到集合B的一個函數,寫作y=f(x),x∈A,其中,x叫做自變量,x的取值範圍A叫做函數的定義域,與x相對應的y的值叫做函數值,函數值的集合B={f(x)∣x∈A }叫做函數的值域。

2、函數定義域的解題思路:

⑴若x處於分母位置,則分母x不能爲0。

⑵偶次方根的被開方數不小於0。

⑶對數式的真數必須大於0。

⑷指數對數式的底,不得爲1,且必須大於0。

⑸指數爲0時,底數不得爲0。

⑹如果函數是由一些基本函數通過四則運算結合而成的,那麼,它的定義域是各個部分都有意義的x值組成的集合。

⑺實際問題中的函數的定義域還要保證實際問題有意義。

3、相同函數

⑴表達式相同:與表示自變量和函數值的字母無關。

⑵定義域一致,對應法則一致。

4、函數值域的求法

⑴觀察法:適用於初等函數及一些簡單的由初等函數通過四則運算得到的函數。

⑵圖像法:適用於易於畫出函數圖像的函數已經分段函數。

⑶配方法:主要用於二次函數,配方成y=(x-a)2+b的形式。

⑷代換法:主要用於由已知值域的函數推測未知函數的值域。

5、函數圖像的變換

⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。

⑵伸縮變換:在x前加上係數。

⑶對稱變換:高中階段不作要求。

6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對於A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那麼就稱對應f:A→B爲從集合A到集合B的映射。

⑴集合A中的每一個元素,在集合B中都有象,並且象是唯一的。

⑵集合A中的不同元素,在集合B中對應的象可以是同一個。

⑶不要求集合B中的每一個元素在集合A中都有原象。

7、分段函數

⑴在定義域的不同部分上有不同的解析式表達式。

⑵各部分自變量和函數值的取值範圍不同。

⑶分段函數的定義域是各段定義域的交集,值域是各段值域的並集。

8、複合函數:如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱爲f、g的複合函數。

高一數學必修五知識點總結

空間兩條直線只有三種位置關係:平行、相交、異面

1、按是否共面可分爲兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

兩異面直線所成的角:範圍爲(0°,90°)

esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)

esp.空間向量法

2、若從有無公共點的角度看可分爲兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

高一數學直線和平面的位置關係

直線和平面只有三種位置關係:在平面內、與平面相交、與平面平行

①直線在平面內——有無數個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規定:

a、直線與平面垂直時,所成的角爲直角,

b、直線與平面平行或在平面內,所成的角爲0°角

由此得直線和平面所成角的取值範圍爲[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那麼它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直於這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那麼我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線和交線平行。

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

高一數學函數知識點 篇七

一:函數及其表示

知識點詳解文檔包含函數的概念、映射、函數關係的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等

1. 函數與映射的區別:

2. 求函數定義域

常見的用解析式表示的函數f(x)的定義域可以歸納如下:

①當f(x)爲整式時,函數的定義域爲R.

②當f(x)爲分式時,函數的定義域爲使分式分母不爲零的實數集合。

③當f(x)爲偶次根式時,函數的定義域是使被開方數不小於0的實數集合。

④當f(x)爲對數式時,函數的定義域是使真數爲正、底數爲正且不爲1的實數集合。

⑤如果f(x)是由幾個部分的數學式子構成的,那麼函數定義域是使各部分式子都有意義的實數集合,即求各部分有意義的實數集合的交集。

⑥複合函數的定義域是複合的各基本的函數定義域的交集。

⑦對於由實際問題的背景確定的函數,其定義域除上述外,還要受實際問題的制約。

3. 求函數值域

(1)、觀察法:通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域;

(2)、配方法;如果一個函數是二次函數或者經過換元可以寫成二次函數的形式,那麼將這個函數的右邊配方,通過自變量的範圍可以求出該函數的值域;

(3)、判別式法:

(4)、數形結合法;通過觀察函數的圖象,運用數形結合的方法得到函數的值域;

(5)、換元法;以新變量代替函數式中的某些量,使函數轉化爲以新變量爲自變量的函數形式,進而求出值域;

(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那麼就可以利用端點的函數值來求出值域;

(7)、利用基本不等式:對於一些特殊的分式函數、高於二次的函數可以利用重要不等式求出函數的值域;

(8)、最值法:對於閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,並與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;

(9)、反函數法:如果函數在其定義域內存在反函數,那麼求函數的值域可以轉化爲求反函數的定義域。